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This paper deals with the accuracy of time integration methods for linear dynamics when
applied near the resonance condition. An approach for the analysis is considered which
allows spurious resonance conditions to be detected. The analysis of Newmark methods
shows the existence of such conditions which can adversely a!ect the quality of numerical
computations. As an alternative, a higher order algorithm, which can be viewed as
a generalization of the trapezoidal rule, is investigated. The analysis reveals that the spurious
disturbance near the resonance condition is greatly reduced. The reported numerical tests
con"rm the theoretical predictions and demonstrate that high-quality simulations can be
obtained by means of higher order algorithms.
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1. INTRODUCTION

Numerical time integration algorithms for linear dynamics are usually analyzed with
reference to the homogeneous part of the solution [1, 2]. In this way, the accuracy analysis
is greatly simpli"ed and useful indications about the error evolution can be obtained.
However, a complete accuracy analysis should take into account the part of the solution
associated with the external load. Only a few studies on the algorithms behaviour with
a forcing term are available (see, for example, references [3}5]). In these cases the accuracy
analysis aims to determine an adequate approximation of the external loads in order to
retain the same order of accuracy of the homogeneous solution. This analysis procedure is
focused only on the error for small time steps and therefore no information is made
available regarding the behaviour with relatively large time steps.

A di!erent approach to the accuracy analysis of the forcing term was introduced by
Preumont [6]. The time integration operators are treated as digital recursive "lters and the
transfer functions of the discretized equations are derived. The comparison between the
numerical and the exact transfer functions gives a more complete picture of the algorithm
behaviour and allows spurious resonance conditions to be detected. In particular, this
procedure applied to Newmark methods shows that in correspondence to the resonance
frequency the algorithms are inaccurate, i.e., a spurious peak in the ratio of the exact to the
numerical transfer function.

In recent years, extensive research has been conducted on higher order methods (see, for
example, the survey given by Fung [7, 8]). The main advantage of these methods is the low
rate of error growth, which is a particularly advantageous feature in long-term simulations.
In this paper, a fourth order algorithms derived from the postintegration technique [9] is
considered and an analysis based on the approach introduced by Preumont is performed.
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This algorithm shows a remarkable improvement over Newmark methods near the
resonance condition, where the spurious peak is signi"cantly reduced. An experimental
evaluation of the algorithm is included, which con"rms the theoretical analysis. It is shown
that the error in the simulations based on the higher order method is more than two orders
of magnitude lower than that obtained with the trapezoidal rule.

An outline of the paper follows. In section 2, the initial-value problem is formulated. In
section 3, the time integration methods considered here are described. In section 4, an
analysis of the algorithms is given. Numerical tests are reported in section 5 and conclusions
are drawn in section 6.

2. THE INITIAL-VALUE PROBLEM

The equations of motion of linear multi-degree-of-freedom systems may be written as
follows:

MuK (t)#CuK (t)#Ku(t)"f(t), t3(0, t
f
], (1)

where superposed dots denote di!erentiation with respect to time t, M is the mass matrix,
C is the damping matrix, K is the sti!ness matrix, f is the prescribed load vector and u is the
unknown displacement vector. The initial conditions are given as

u D
0
"u

0
, u5 D

0
"v

0
, (2, 3)

where u
0

and v
0

are the prescribed initial displacement and velocity vectors. The matrices
M, C and K are symmetric, M is positive-de"nite, C and K are positive-semide"nite. Under
the hypothesis of proportional damping, the modal decomposition procedure (see reference
[1] for details) can be used to decouple the initial-value problem de"ned by equations
(1)}(3). The typical modal initial-value problem takes the form

uK (t)#2muuR (t)#u2u (t)"f (t), t3(0, t
f
], (4)

u(0)"u
0
, uR (0)"v

0
, (5, 6)

where the real non-negative parameter u represents a natural frequency of the system and
m is the damping ratio. In the analysis of numerical methods for the solution of equations
(1)}(3), for simplicity the undamped case is considered (m"0). Assuming that the forcing
term can be expanded in Fourier series and invoking the superposition principle [10], it is
su$cient to consider a generic sinusoidal component. Setting f (t)"e*lt, the exact response
in the mode corresponding to the frequency u is given by

u(t)"u
h
(t)#u

p
(t), (7)

where

u
h
(t)"u

0
cos(ut)#

v
0

u
sin(ut) (8)

is the homogeneous solution and

u
p
(t)"

!u cos(lt)#u cos(ut)!iu sin(lt)#il sin(ut)

u(l2!u2)
(9)

is the particular solution.
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3. THE TIME INTEGRATION METHODS

Let 0"t
0
(t

1
(2(t

N
"t

f
be a partition of the time domain and let Dt"t

n`1
!t

n
be

the step size. The numerical approximations to u (t
n
) and uR (t

n
) are denoted by u

n
and v

n
respectively. Assuming that the numerical solution at t"t

n
is known from the (n!1)th time

step, one-step time integration algorithms can be put in the form of a time advance scheme

y
n`1

"Ay
n
#L

n
, n"0,2 , N!1, (10)

where yT
n
"[u

n
, v

n
], A is the ampli"cation matrix, L

n
is the load vector, and the starting

value y
0

is given by equations (5) and (6). The load vector can be written as

L
n
"Br

n
, (11)

where the vector r
n

collects the evaluations of the forcing term at some given sampling
points and B is a matrix which does not depend on the forcing term. For example, in the
case of Newmark methods
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], (14)

where d"1#bX2 and X"uDt.
The postintegration technique [9] is based on expressions of the velocity and the

displacement which are both obtained by integrating the acceleration. At t"t
n`1
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, (15, 16)

where

D
n
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tn

uK (t) dt. (17, 18)

It is possible to formulate various families of methods based on equations (15)}(18). First,
an approximate displacement u (t) in [t

n
, t

n`1
] is de"ned using the nodal values u

n
, v

n
, u

n`1
,

v
n`1

. Next, the acceleration is obtained from the equation of motion (4), which in the case of
m"0 yields

uK (t)"f (t)!u2u (t). (19)

Substituting equation (19) into the integrals (17) and (18) gives
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The time integration method is de"ned by the form of the approximate displacement and
the quadrature rule used to evaluate the integrals in equations (20) and (21). Integrating
equations (20) and (21) exactly with linear Hermite polynomials, the ampli"cation matrix of
the linear acceleration method is obtained. If a single-point quadrature rule is used, the
Newmark methods are obtained with the parameters b and c related to the position of the
integration point and the integration weight. The trapezoidal rule is obtained setting the
weight equal to 1 and placing the integration point in the middle of the interval.

Higher order methods can be obtained using higher order polynomials to represent the
approximated displacement. The method considered here is based on a cubic Hermite
polynomial. The Simpson rule is used to evaluate the integrals. The ampli"cation matrix is

A"

1

d C
144!60X2#X4

12X2 (!12#X2)/Dt

12Dt(12!X2)

144!60X2#X4D , (22)

where d"144#12X2#X4 and X"uDt. The load term is de"ned by
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where f
n
, f

n`1@2
, f

n`1
are the evaluations of the forcing term at t

n
, t

n
#Dt/2 and

t
n`1

respectively. In the following, this method will be referred to as PI3 method.

4. ANALYSIS

Under the hypotheses of stability and consistency an algorithm is convergent [2], that is
the numerical solution of the semidiscrete system approaches the exact one as DtP0. The
integration scheme is unconditionally stable if, and only if, the spectral radius of the
ampli"cation matrix A satis"es o (A))1 for all Dt [1]. The local truncation error is de"ned
as

s (t
n
)"y (t

n`1
)!Ay(t

n
)#L

n
,

where yT(t
n
)"[u (t

n
), v (t

n
)]. A time advance scheme is consistent if two positive constants

C and k, not depending on Dt, exist, for which

Es (t
n
)E)CDtk`1 .

4.1. ACCURACY OF THE HOMOGENEOUS SOLUTION

Besides the local truncation error, the following measures of accuracy are widely used in
the analysis of time integration methods [2]: (1) the algorithmic damping ratio mM ,
abbreviated as adr, (2) the relative period error X/X1 !1, abbreviated as rpe.

Newmark methods with 1
2
)c)2b are unconditionally stable and second order accurate

for c"1
2
.

It can be easily shown that the algorithm PI3 described by equations (22) and (23) is
unconditionally stable and the spectral radius is equal to 1 for all Dt. Table 1 shows the local
truncation errors for the homogeneous part, the algorithmic damping ratio and the relative
period error, thus indicating that the algorithm is fourth order accurate.



TABLE 1

PI3 method2measures of accuracy of the homogeneous solution

Coe$cient Order

Displacement
1

720
v
0
u4 Dt5

Velocity !

1

720
u
0
u6 Dt5

adr 0

rpe
1

720
X4

TABLE 2

PI3 method2lte of the particular solution

Coe$cient Order

Displacement !

1

720
il (u2#l2) Dt5

Velocity
1

720
u2l2!

1

2880
l4#

1

720
u4 Dt5
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4.2. ACCURACY OF THE PARTICULAR SOLUTION

Table 2 shows the local truncation error for the particular integral (in the case of
exponential excitation e*lt) for the PI3 method. It can be seen that the particular solution
has the same order of accuracy of the homogeneous solution.

To get more insight into the accuracy of the loading term, it is useful to refer to the
transfer function H*

u
. Considering the modal initial-value problem (equation (4)) with

m"0 and assuming that the forcing term is e*lt, the transfer function has the well-known
form [10]

H*
u
"

1

u2!l2
. (25)

Following Preumont [6], it is possible to obtain an expression for the transfer function
of the time advance scheme (equation (10)), which can be compared with equation (25)
and used to analyze the behaviour of the algorithm with regard to the response to a forcing
term.

If it is assumed that the excitation has complex exponential form f (t)"e*lt, at t"t
n
, the

solution can be written as

A
u
n

v
n
B"A

H
u

H
v
B e*lnDt, (26)
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where H
u

and H
v

are the transfer function for the numerical displacement and velocity.
Using equations (10) and (26),

A
H

u
H

v
B"[e*lDtI!A]~1Br (27)

is obtained where I is the identity matrix, rT"[1, e*lDt] for the Newmark method and
rT"[1, e*lDt@2, e*lDt] for the PI3 algorithm.

The comparison of H
u

and H
v

with the exact forms H*
u

and H*
v
"ilH*

u
gives

the desired information about the behaviour of the algorithm with regard to the forcing
term.

The ratio DH
u
D/DH*

u
D has been analyzed for the Newmark methods for various

values of the parameters b and c [6]. The same analysis of the ratio DH
u
D/DH*

u
D is performed

here for the PI3 algorithm. In Figure 1 the trapezoidal rule and the PI3 method are
compared assuming X/2n"0)2. The ratio DH

u
D/DH*

u
D is plotted versus the ratio e"l/u. It

can be noted that a spurious peak (corresponding to a vertical asymptote of DH
u
D/DH*

u
D)

occurs near the resonance condition (e"1). As illustrated in the enlargement in Figure 2 the
width of the disturbance in the PI3 algorithm is greatly reduced compared to the
trapezoidal rule.

The value of e corresponding to a spurious resonance can be derived as a function of X.
With this aim, an expression for the ratio DH

u
D/DH*

u
D has been obtained, and values of

e corresponding to vertical asymptotes (i.e., spurious resonance conditions) have been
sought. For both the Newmark method and the PI3 algorithm the numerator of DH

u
D/DH*

u
D

is equal to zero only if e"1, while the denominator is zero for values of e satisfying the
following equations:

x2 (X4#12X2#144)#x (120X2!2X4!288)#X4#12X2#144"0, (28)

x2 (X2#4)#x(2X2!8)#X2#4"0 (29)
Figure 1. DH
u
D/DH*

u
D for the PI3 and Newmark methods: higher order; trapezoidal rule.



Figure 2. DH
u
D/DH*

u
D for the PI3 and Newmark methods: higher order; trapezoidal rule.
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for the PI3 algorithm and the trapezoidal rule, respectively, where x"e*Xe, X"uDt.
Solving for x, an expression for e can be obtained as a function of X, i.e.,

e"
1

X
arctan(144X!12X3, 144!60X2#X4) (30)

for the PI3 algorithm and

e"
1

X
arctan(4X,!X2#4) (31)

for the trapezoidal rule, where the two-argument function arctan(b, a) computes the
principal value of the argument of the complex number a#ib (so !n(arctan(b, a))n).
Expanding e(X) in Taylor series, one obtains

e"1!
1

720
X4#o (X5) (32)

for the PI3 algorithm and

e"1!
1

12
X2#o (X3) (33)

for the trapezoidal rule. These expressions show that the resonance condition occurs for
e(1, for small values of uDt. It should be noted that the shift in the position of the spurious
resonance has the same order of the local truncation error.

5. NUMERICAL RESULTS

The numerical evaluation of the PI3 method and the comparison with the trapezoidal
rule can be performed by considering a single-degree-of-freedom system excited by
a sinusoidal force with l close to the frequency u. The exact solution corresponding to



Figure 3. Time histories of the displacement error for the trapezoidal rule: (a) e"0)5; (b) e"0)9; (c) e"0)99.
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u
0
"0, v

0
"0 and f (t)"sin(lt) is

u(t)"
!u sin(lt)#l sin(ut)

u(l2!u2)
. (34)



Figure 4. Time histories of the displacement error for the PI3 method: (a) e"0)5; (b) e"0)9; (c) e"0)99.
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The numerical simulations have been performed assuming l"1 and Dt"¹/20, where
¹"2n/u is the free vibration period of the system. The response up to t

f
"20¹ is

considered. Figure 3 shows some time histories of the displacement error (de"ned as the
di!erence between the exact quantity and the numerical one) for the trapezoidal rule.
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Di!erent values of e"l/u are examined. The error accumulation for e"0)5 is slow (Figure
3(a)), but it becomes faster as the resonance condition is approached (e"0)99), as can be
seen in Figure 3(c). The same tendency is observed in Figure 3(b) in the case of e"0)9. The
unsatisfactory behaviour of the Newmark methods near the resonance condition is evident.
As regards the velocity error, the time evolutions are very similar to the corresponding
displacement error and therefore are not shown.

Figure 4 shows the time histories of the displacement error for the PI3 method with the
same values of e used for the trapezoidal rule. The errors for e"0)5 are small, as shown in
Figure 4(a). However, even in the cases e"0)9 and 0)99 the error accumulation is quite slow
(Figures 4(b) and 4(c)): the errors are at least two orders of magnitude lower than those
obtained by the trapezoidal rule.

In order to emphasize the improved performance of the PI3 method, the errors of the
Newmark method and the PI3 method are plotted in Figure 5. Figure 6, which shows the
velocity errors, con"rms the higher accuracy of the PI3 method.

6. CONCLUSIONS

An approach for the accuracy analysis of time integration algorithms which takes into
account the forcing term is described. This approach is based on comparison of the
numerical and exact transfer functions. When applied to Newmark methods, this analysis
reveals spurious resonance conditions that can compromise the solution. A higher order
algorithm, formulated by means of the postintegration technique, is considered as an
alternative. This method shows an improved performance near the resonance conditions
both in the theoretical accuracy analysis and in the numerical tests.

The present study shows that higher order algorithms are more suitable than traditional
Newmark methods, when a high accuracy is required near the resonance condition.
Although higher order methods are more computationally expensive than traditional ones,
Figure 5. Displacement errors of the trapezoidal rule and PI3* e"0)9* displacement: higher order;
trapezoidal rule.



Figure 6. Velocity errors for the trapezoidal rule and PI3 * e"0)9 * velocity: higher order;
trapezoidal rule.
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e!ective implementation strategies are available (see, for example, the iterative solution
procedure for a discontinuous Galerkin method described by Li and Wiberg [11]).
Therefore, higher order algorithms appear to be a promising alternative to traditional
second order methods.
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